Turán problems and shadows II: Trees

نویسندگان

  • Alexandr V. Kostochka
  • Dhruv Mubayi
  • Jacques Verstraëte
چکیده

The expansion G of a graph G is the 3-uniform hypergraph obtained from G by enlarging each edge of G with a vertex disjoint from V (G) such that distinct edges are enlarged by distinct vertices. Let exr(n, F ) denote the maximum number of edges in an r-uniform hypergraph with n vertices not containing any copy of F . The authors [11] recently determined ex3(n,G ) more generally, namely when G is a path or cycle, thus settling conjectures of Füredi-Jiang [9] (for cycles) and Füredi-Jiang-Seiver [10] (for paths). Here we continue this project by determining the asymptotics for ex3(n,G ) when G is any fixed forest. This settles a conjecture of Füredi [8]. Using our methods, we also show that for any graph G, either ex3(n,G ) ≤ ( 1 2 + o(1) ) n or ex3(n,G ) ≥ (1 + o(1))n, thereby exhibiting a jump for the Turán number of expansions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 - Introduction to hypergraphs

We begin with an introduction to hypergraphs, which gives a taste of different representations of hypergraphs, linear hypergraphs, and Turán-type problems, including existence of Turán densities and classification of zero Turán densities. Thereafter we delve deeper into some of the classical theorems of hypergraph theory, including various theorems on intersecting families such as Sperner’s The...

متن کامل

Turán Problems and Shadows III: Expansions of Graphs

The expansion G of a graph G is the 3-uniform hypergraph obtained from G by enlarging each edge of G with a new vertex disjoint from V (G) such that distinct edges are enlarged by distinct vertices. Let ex3(n, F ) denote the maximum number of edges in a 3-uniform hypergraph with n vertices not containing any copy of a 3-uniform hypergraph F . The study of ex3(n,G ) includes some well-researched...

متن کامل

Symmetry in Turán Sums of Squares Polynomials from Flag Algebras

Turán problems in extremal combinatorics concern asymptotic bounds on the edge densities of graphs and hypergraphs that avoid specified subgraphs. The theory of flag algebras proposed by Razborov provides powerful semidefinite programming based methods to find sums of squares that establish edge density inequalities in Turán problems. Working with polynomial analogs of the flag algebra entities...

متن کامل

Chromatic Turán problems and a new upper bound for the Turán density of Ks-4

Chromatic Turán problems and a new upper bound for the Turán density of K We consider a new type of extremal hypergraph problem: given an r-graph F and an integer k ≥ 2 determine the maximum number of edges in an F-free, k-colourable r-graph on n vertices. Our motivation for studying such problems is that it allows us to give a new upper bound for an old problem due to Turán. We show that a 3-g...

متن کامل

Shadows and Light

in the evening winter is creme among shadows, belting mysteriously to grass and thinly-clad trees...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. B

دوره 122  شماره 

صفحات  -

تاریخ انتشار 2017